

Workshop on Decarbonising the EU fishing sector

Examples from Norway

Cecilia Gabrielii SINTEF Energy Research, Norway

Mapping of GHG emissions

- Challenge: lack of operational data
 - today based on annual fuel consumption, or installed engine power
 - need for continuous onboard measurement on various energy consumers

Analysis of energy consumption

Reduce the energy demand

Energy/emission mapping and analysis

- Research cruise on a pelagic trawler for data collection and observations
 - Detailed fuel consumption time, operational modus, various consumers
 - Refrigeration system performance
 - Temperature measurements in chilling tanks and landed fish
 - Weather, catch, operational behaviour

- Data analysis for reducing the energy demand on existing ship and new-builds
 - Talk with crew, discuss "simple every day" measures
 - Input for designing the next ships

System thinking – to avoid sub-optimisation

One example:

- New propulsion systems / alternative fuels offers various opportunities for waste energy recovery
 - LNG/LBG and LH2 enables cold recovery to support the refrigeration systems
 - Combustion engines and HT fuel cells enables heat recovery for power production/refrigeration/heating
 - LT Fuel cells and batteries has limited heat recovery options

The choice of propulsion system and fuel must be made with an integrated system approach

Alternative fuels/propulsion systems

Available and used today

The first diesel-battery fishing vessel (2016)

The first LNG-battery fishing vessel (2021)

Available and used "tomorrow" (examples)

- LNG and diesel can be replaced by biofuels and e-fuels
- Ammonia (NH3) and hydrogen (H2) in combustion engines or fuel cells

MAIN CHALLENGES with NH3 (and H2)

- Bunkering infrastructure
- Safety issues public acceptance
- End use Onboard technology
- ➤ Value chain cost, emissions

The first NH3 fishing vessel? (?)

- Some of the benefits with ammonia:
 - Less space is required onboard (compared to H2)
 - Already used in refrigeration systems onboard fishing vessel
 - Existing LNG bunkering infrastructure can be used

State-of-the-art fishing vessel energy recovery and energy efficiency

 40% reduction in total GHG reduction compared to a similar vessel with conventional technology

Hybrid propulsion with combustion engines and batteries

- Fuel: LNG (LBG when available)
- GHG reduction from switching from diesel to LNG: 20%

20% GHG reduction from energy efficiency and energy recovery

- Cold recovery from LNG: supports refrigeration compressors
- Efficient refrigeration system, advanced temperature control
- Power production and heat supply from engine waste heat
- Battery peak shaving and optimised engine operation
- Shore power
- Energy recovery from electric winches
- Designed for lower maximum speed

How to realise use of carbon-neutral maritime fuels?

- Key success factors for introducing new maritime fuel
 - Infrastructure for production and distribution must be established together with the prototypes being tested
 - Collaboration projects with partners from the whole value chain

The Green Platform Initiative - Norwegian Government

- provides funding for enterprises and research institutes engaged in green growth and restructuring driven by R&I.
- stimulate bigger and more rapid investments from companies in green sustainable solutions and products

Ammonia Fuel bunkering network

Industry project main goal: Realize an ammonia fuel value chain for the first ammoniafuelled ships

Research project: develop and disseminate knowledge to facilitate realization of a cost-efficient value chain and safe use of NH3 as a zero-carbon maritime fuel.

Another "Green Platform" project: **Hydrogen for coastal fishing vessels**

ZeroKyst will set into motion a rapid technology shift for all vessel types in the fisheries and aquaculture industry

Develop and demonstrate a zeroemission powertrain

Develop a new zeroemission vessel

Retrofit 10 vessels to zero-emission propulsion

Thank you!